Những câu hỏi liên quan
Lê Đức Lương
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:58

Với mọi số thực dương a;b;c ta có BĐT:

\(a^4+b^4\ge ab\left(a^2+b^2\right)\Leftrightarrow\left(a-b\right)^2\left(a^2+ab+b^2\right)\ge0\)

Tương tự, ta có:

\(VT\le\dfrac{ab}{ab\left(a^2+b^2\right)+ab}+\dfrac{bc}{bc\left(b^2+c^2\right)+bc}+\dfrac{ca}{ca\left(c^2+a^2\right)+ca}\)

\(VT\le\dfrac{1}{a^2+b^2+1}+\dfrac{1}{b^2+c^2+1}+\dfrac{1}{c^2+a^2+1}\)

Đặt \(\left(a^2;b^2;c^2\right)=\left(x^3;y^3;z^3\right)\Rightarrow xyz=1\)

\(VT\le\dfrac{1}{x^3+y^3+1}+\dfrac{1}{y^3+z^3+1}+\dfrac{1}{z^3+x^3+1}\)

Ta lại có: \(x^3+y^3=\left(x+y\right)\left(x^2+y^2-xy\right)\ge\left(x+y\right)\left(2xy-xy\right)=xy\left(x+y\right)\)

\(\Rightarrow VT\le\dfrac{xyz}{xy\left(x+y\right)+xyz}+\dfrac{xyz}{yz\left(y+z\right)+xyz}+\dfrac{xyz}{zx\left(z+x\right)+xyz}=1\)

Bình luận (0)
Lê Đức Lương
Xem chi tiết
Nguyễn An
Xem chi tiết
Nguyễn Việt Lâm
5 tháng 10 2021 lúc 12:32

Đặt \(\left(a;b;c\right)=\left(\dfrac{y}{x};\dfrac{z}{y};\dfrac{x}{z}\right)\)

\(\Rightarrow VT=\dfrac{1}{\dfrac{y}{x}\left(\dfrac{z}{y}+1\right)}+\dfrac{1}{\dfrac{z}{y}\left(\dfrac{x}{z}+1\right)}+\dfrac{1}{\dfrac{x}{z}\left(\dfrac{y}{x}+1\right)}\)

\(VT=\dfrac{x}{y+z}+\dfrac{y}{z+x}+\dfrac{z}{x+y}=\dfrac{x^2}{xy+xz}+\dfrac{y^2}{xy+yz}+\dfrac{z^2}{xz+yz}\)

\(VT\ge\dfrac{\left(x+y+z\right)^2}{2\left(xy+yz+zx\right)}\ge\dfrac{3\left(xy+yz+zx\right)}{2\left(xy+yz+zx\right)}=\dfrac{3}{2}\)

Bình luận (0)
Thầy Cao Đô
Xem chi tiết
VUX NA
Xem chi tiết
Nguyễn Việt Lâm
9 tháng 8 2021 lúc 15:36

\(\dfrac{a^3}{b}+\dfrac{b^3}{c}+\dfrac{c^3}{a}=\dfrac{a^4}{ab}+\dfrac{b^4}{bc}+\dfrac{c^4}{ca}\ge\dfrac{\left(a^2+b^2+c^2\right)^2}{ab+bc+ca}\ge\dfrac{\left(a^2+b^2+c^2\right)\left(ab+bc+ca\right)}{ab+bc+ca}=a^2+b^2+c^2\)

Mặt khác ta có:

\(\left(a-b\right)^2+\left(b-c\right)^2+\left(c-a\right)^2+\left(a-1\right)^2+\left(b-1\right)^2+\left(c-1\right)^2\ge0\)

\(\Leftrightarrow3\left(a^2+b^2+c^2\right)\ge2\left(a+b+c+ab+bc+ca\right)-3=9\)

\(\Rightarrow a^2+b^2+c^2\ge3\)

Từ đó suy ra đpcm

Bình luận (0)
Nguyễn Quốc Việt
Xem chi tiết
Nguyễn Việt Lâm
8 tháng 4 2021 lúc 22:43

\(\Leftrightarrow\left(1+ab+bc+ca\right)\left(\dfrac{1}{\left(a+b\right)\left(a+c\right)}+\dfrac{1}{\left(a+b\right)\left(b+c\right)}+\dfrac{1}{\left(a+c\right)\left(b+c\right)}\right)\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)\left(a+b+c\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{ab+bc+ca}{abc}\)

Áp dụng BĐT quen thuộc:

\(\left(a+b\right)\left(b+c\right)\left(c+a\right)\ge\dfrac{8}{9}\left(ab+bc+ca\right)\left(a+b+c\right)=\dfrac{8}{9}\left(ab+bc+ca\right)\)

\(\Rightarrow\dfrac{2\left(1+ab+bc+ca\right)}{\left(a+b\right)\left(b+c\right)\left(c+a\right)}\le\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\)

Ta chỉ cần chứng minh:

\(\dfrac{9\left(1+ab+bc+ca\right)}{4\left(ab+bc+ca\right)}\le\dfrac{ab+bc+ca}{abc}\)

\(\Leftrightarrow4\left(ab+bc+ca\right)^2\ge9abc+9abc\left(ab+bc+ca\right)\)

Do \(3\left(ab+bc+ca\right)^2\ge9abc\left(a+b+c\right)=9abc\)

Nên ta chỉ cần chứng minh:

\(\left(ab+bc+ca\right)^2\ge9abc\left(ab+bc+ca\right)\)

\(\Leftrightarrow ab+bc+ca\ge9abc\Leftrightarrow\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge9\)

Hiển nhiên đúng do \(\dfrac{1}{a}+\dfrac{1}{b}+\dfrac{1}{c}\ge\dfrac{9}{a+b+c}=9\)

Bình luận (0)
卡拉多克
Xem chi tiết
Minz Ank
Xem chi tiết
Nguyễn Việt Lâm
7 tháng 5 2023 lúc 11:34

Tách biểu thức như sau:

\(\left(\dfrac{a}{9}+\dfrac{b}{12}+\dfrac{c}{6}+\dfrac{8}{abc}\right)+\left(\dfrac{a}{18}+\dfrac{b}{24}+\dfrac{2}{ab}\right)+\left(\dfrac{b}{16}+\dfrac{c}{8}+\dfrac{2}{bc}\right)+\left(\dfrac{a}{9}+\dfrac{c}{6}+\dfrac{2}{ca}\right)+\left(\dfrac{13a}{18}+\dfrac{13b}{24}\right)+\left(\dfrac{13b}{48}+\dfrac{13c}{24}\right)\)

Bình luận (3)
Trần Tuấn Hoàng
14 tháng 5 2023 lúc 12:06
(Nháp)\(a+2b+3c=20\)Với các tham số \(0< x,y,z< 1\) ta có:\(A=a+b+c+\dfrac{3}{a}+\dfrac{9}{2b}+\dfrac{4}{c}\)\(=xa+yb+zc+\left(\dfrac{3}{a}+\left(1-x\right)a\right)+\left(\dfrac{9}{2b}+\left(1-y\right)b\right)+\left(\dfrac{4}{c}+\left(1-z\right)c\right)\)\(\ge^{Cauchy}xa+yb+zc+2\left(\sqrt{3\left(1-x\right)}+\sqrt{\dfrac{9\left(1-y\right)}{2}}+\sqrt{4\left(1-z\right)}\right)\)Chọn các tham số x,y,z (0<x,y,z<1) sao cho:\(\left\{{}\begin{matrix}x=\dfrac{y}{2}=\dfrac{z}{3}\\\dfrac{3}{a}=\left(1-x\right)a\\\dfrac{9}{2b}=\left(1-y\right)b\\\dfrac{4}{c}=\left(1-z\right)c\end{matrix}\right.\) và \(a+2b+3c=20\) \(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-y\right)}}\\c=\sqrt{\dfrac{4}{1-z}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\left\{{}\begin{matrix}y=2x;z=3x\\a=\sqrt{\dfrac{3}{1-x}}\\b=\sqrt{\dfrac{9}{2\left(1-2x\right)}}\\c=\sqrt{\dfrac{4}{1-3x}}\end{matrix}\right.\) và \(a+2b+3c=20\)\(\Rightarrow\sqrt{\dfrac{3}{1-x}}+2\sqrt{\dfrac{9}{2\left(1-2x\right)}}+3\sqrt{\dfrac{4}{1-3x}}=20\)Bấm máy ta được \(x=\dfrac{1}{4}\Rightarrow y=\dfrac{1}{2};z=\dfrac{3}{4}\)\(\Rightarrow\left\{{}\begin{matrix}a=\sqrt{\dfrac{3}{1-\dfrac{1}{4}}}=2\\b=\sqrt{\dfrac{9}{2\left(1-2.\dfrac{1}{4}\right)}}=3\\c=\sqrt{\dfrac{4}{1-3.\dfrac{1}{4}}}=4\end{matrix}\right.\) 
Bình luận (1)